【人工智能项目】Bert实现问答预测系统
【人工智能项目】Bert实现问答预测系统DrQA 是一个开放域的问答系统。向 DrQA 系统输入一段文本,然后提一个答案能在该文本中找到的问题,那么 DrQA 就能给出这个问题的答案。本次任务就是用Bert实现一个问答系统,输入Q1问题,Q2文本,标签为是否能在Q2中找到Q1的答案。那么话不多说,走起!!!环境本次环境是在google colab进行的,所用的gpu情况具体如下所示:!nvidia
【人工智能项目】Bert实现问答预测系统

DrQA 是一个开放域的问答系统。向 DrQA 系统输入一段文本,然后提一个答案能在该文本中找到的问题,那么 DrQA 就能给出这个问题的答案。
本次任务就是用Bert实现一个问答系统,输入Q1问题,Q2文本,标签为是否能在Q2中找到Q1的答案。
那么话不多说,走起!!!
环境
本次环境是在google colab进行的,所用的gpu情况具体如下所示:
!nvidia-smi

导入所需的模块
#! -*- coding:utf-8 -*-
import re, os, json, codecs, gc
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import time
import datetime
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import class_weight as cw
from keras import Sequential
from keras.models import Model
from keras.layers import LSTM,Activation,Dense,Dropout,Input,Embedding,BatchNormalization,Add,concatenate,Flatten
from keras.layers import Conv1D,Conv2D,Convolution1D,MaxPool1D,SeparableConv1D,SpatialDropout1D,GlobalAvgPool1D,GlobalMaxPool1D,GlobalMaxPooling1D
from keras.layers.pooling import _GlobalPooling1D
from keras.layers import MaxPooling2D,GlobalMaxPooling2D,GlobalAveragePooling2D
from keras.optimizers import RMSprop,Adam
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.utils import to_categorical
from keras.callbacks import EarlyStopping
from keras.callbacks import ModelCheckpoint
from keras.callbacks import ReduceLROnPlateau
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
读取文件
train_dataset_path = "./train.tsv"
test_dataset_path = "./test.tsv"
train_df = pd.read_csv(train_dataset_path, sep='\t',names=["Q","Q1","Q2","label"])
test_df = pd.read_csv(test_dataset_path, sep='\t',names=["Q","Q1","Q2","label"])
train_df

test_df

去除无标签的数据
train_df.dropna(axis=0, how='any', inplace=True)
train_df

清洗文本数据
对文本中的一些特殊符号进行数据清洗工作。
import re
def filter(text):
text = re.sub("[A-Za-z0-9\!\=\?\%\[\]\,\(\)\>\<:<\/#\. -----\_]", "", text)
text = text.replace('图片', '')
text = text.replace('\xa0', '') # 删除nbsp
# new
r1 = "\\【.*?】+|\\《.*?》+|\\#.*?#+|[.!/_,$&%^*()<>+""'?@|:~{}#]+|[——!\\\,。=?、:“”‘’¥……()《》【】]"
cleanr = re.compile('<.*?>')
text = re.sub(cleanr, ' ', text) #去除html标签
text = re.sub(r1,'',text)
text = text.strip()
return text
def clean_text(data):
data['text'] = data['Q1'].apply(lambda x: filter(x))
data['text'] = data['Q2'].apply(lambda x: filter(x))
return data
train = clean_text(train_df)
test = clean_text(test_df)


数据预处理
对Q1和Q2这两列数据进行合并,以方便后续处理工作。
train_df["ocr"] = train_df["Q1"] + " " + train_df["Q2"]
test_df["ocr"] = test_df["Q1"] + " " + test_df["Q2"]


标签统计
sns.countplot(train_df["label"])
plt.xlabel("Label")
plt.title("News sentiment analysis")

sns.countplot(test_df["label"])
plt.xlabel("Label")
plt.title("News sentiment analysis")

最终训练集
train_df.shape
(21527, 6)

test_df

安装bert
!pip install keras_bert
Looking in indexes: http://mirrors.aliyun.com/pypi/simple/
Requirement already satisfied: keras_bert in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (0.81.0)
Requirement already satisfied: numpy in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras_bert) (1.18.1)
Requirement already satisfied: Keras in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras_bert) (2.3.1)
Requirement already satisfied: keras-transformer>=0.30.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras_bert) (0.33.0)
Requirement already satisfied: keras-preprocessing>=1.0.5 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (1.1.0)
Requirement already satisfied: scipy>=0.14 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (1.4.1)
Requirement already satisfied: h5py in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (2.8.0)
Requirement already satisfied: keras-applications>=1.0.6 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (1.0.8)
Requirement already satisfied: pyyaml in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (5.3)
Requirement already satisfied: six>=1.9.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from Keras->keras_bert) (1.14.0)
Requirement already satisfied: keras-multi-head>=0.22.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-transformer>=0.30.0->keras_bert) (0.22.0)
Requirement already satisfied: keras-layer-normalization>=0.12.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-transformer>=0.30.0->keras_bert) (0.14.0)
Requirement already satisfied: keras-embed-sim>=0.7.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-transformer>=0.30.0->keras_bert) (0.7.0)
Requirement already satisfied: keras-pos-embd>=0.10.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-transformer>=0.30.0->keras_bert) (0.11.0)
Requirement already satisfied: keras-position-wise-feed-forward>=0.5.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-transformer>=0.30.0->keras_bert) (0.6.0)
Requirement already satisfied: keras-self-attention==0.41.0 in /root/miniconda3/envs/myconda/lib/python3.7/site-packages (from keras-multi-head>=0.22.0->keras-transformer>=0.30.0->keras_bert) (0.41.0)
下载本次所需的bert预训练好的模型
!wget -c https://storage.googleapis.com/chineseglue/pretrain_models/roeberta_zh_L-24_H-1024_A-16.zip
–2020-05-06 13:01:24-- https://storage.googleapis.com/chineseglue/pretrain_models/roeberta_zh_L-24_H-1024_A-16.zip
Resolving storage.googleapis.com (storage.googleapis.com)… 172.253.120.128, 2a00:1450:400c:c00::80
Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.120.128|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 1208484809 (1.1G) [application/zip]
Saving to: ‘roeberta_zh_L-24_H-1024_A-16.zip’
roeberta_zh_L-24_H- 100%[===================>] 1.12G 82.3MB/s in 15s
2020-05-06 13:01:40 (76.2 MB/s) - ‘roeberta_zh_L-24_H-1024_A-16.zip’ saved [1208484809/1208484809]
!unzip roeberta_zh_L-24_H-1024_A-16.zip
Archive: roeberta_zh_L-24_H-1024_A-16.zip
inflating: bert_config_large.json
inflating: checkpoint
inflating: roberta_zh_large_model.ckpt.data-00000-of-00001
inflating: roberta_zh_large_model.ckpt.index
inflating: roberta_zh_large_model.ckpt.meta
inflating: vocab.txt
训练
#! -*- coding:utf-8 -*-
import re, os, json, codecs, gc
import numpy as np
import pandas as pd
from random import choice
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
from keras_bert import load_trained_model_from_checkpoint, Tokenizer
from keras.layers import *
from keras.callbacks import *
from keras.models import Model
import keras.backend as K
from keras.optimizers import Adam
maxlen = 128
config_path = './bert_config_large.json'
# checkpoint_path = '/export/home/liuyuzhong/kaggle/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
checkpoint_path = './roberta_zh_large_model.ckpt'
dict_path = './vocab.txt'
token_dict = {}
with codecs.open(dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
token_dict[token] = len(token_dict)
class OurTokenizer(Tokenizer):
def _tokenize(self, text):
R = []
for c in text:
if c in self._token_dict:
R.append(c)
elif self._is_space(c):
R.append('[unused1]') # space类用未经训练的[unused1]表示
else:
R.append('[UNK]') # 剩余的字符是[UNK]
return R
tokenizer = OurTokenizer(token_dict)
def seq_padding(X, padding=0):
L = [len(x) for x in X]
ML = max(L)
return np.array([
np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
])
class data_generator:
def __init__(self, data, batch_size=4, shuffle=True):
self.data = data
self.batch_size = batch_size
self.shuffle = shuffle
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
if self.shuffle:
np.random.shuffle(idxs)
X1, X2, Y = [], [], []
for i in idxs:
d = self.data[i]
text = d[0][:maxlen]
x1, x2 = tokenizer.encode(first=text)
y = d[1]
X1.append(x1)
X2.append(x2)
Y.append([y])
if len(X1) == self.batch_size or i == idxs[-1]:
X1 = seq_padding(X1)
X2 = seq_padding(X2)
Y = seq_padding(Y)
yield [X1, X2], Y[:, 0, :]
[X1, X2, Y] = [], [], []
from keras.metrics import top_k_categorical_accuracy
def acc_top5(y_true, y_pred):
return top_k_categorical_accuracy(y_true, y_pred, k=5)
def build_bert(nclass):
bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)
for l in bert_model.layers:
l.trainable = True
x1_in = Input(shape=(None,))
x2_in = Input(shape=(None,))
x = bert_model([x1_in, x2_in])
x = Lambda(lambda x: x[:, 0])(x)
p = Dense(nclass, activation='softmax')(x)
model = Model([x1_in, x2_in], p)
model.compile(loss='categorical_crossentropy',
optimizer=Adam(1e-5),
metrics=['accuracy', acc_top5])
print(model.summary())
return model
def run_cv(nfold, data, data_label, data_test):
kf = KFold(n_splits=nfold, shuffle=True, random_state=520).split(data)
# 改
train_model_pred = np.zeros((len(data), 2))
test_model_pred = np.zeros((len(data_test), 2))
k = 0
for i, (train_fold, test_fold) in enumerate(kf):
X_train, X_valid, = data[train_fold, :], data[test_fold, :]
# 改
model = build_bert(2)
early_stopping = EarlyStopping(monitor='val_acc', patience=3)
plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5, patience=2)
checkpoint = ModelCheckpoint('./bert_dump/' + str(i) + '.hdf5', monitor='val_acc',
verbose=2, save_best_only=True, mode='max',save_weights_only=True)
train_D = data_generator(X_train, shuffle=True)
valid_D = data_generator(X_valid, shuffle=True)
test_D = data_generator(data_test, shuffle=False)
history = model.fit_generator(
train_D.__iter__(),
steps_per_epoch=len(train_D),
epochs=3,
validation_data=valid_D.__iter__(),
validation_steps=len(valid_D),
callbacks=[early_stopping, plateau, checkpoint],
)
# return model
train_model_pred[test_fold, :] = model.predict_generator(valid_D.__iter__(), steps=len(valid_D),verbose=1)
test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D),verbose=1)
del model; gc.collect()
K.clear_session()
# break
if k == 0:
break
return train_model_pred, test_model_pred,history
train_model_pred, test_model_pred,history = run_cv(2, DATA_LIST, None, DATA_LIST_TEST)

绘制loss和acc曲线
# 绘制训练过程中的 loss 和 acc 变化曲线
import matplotlib.pyplot as plt
%matplotlib inline
def history_plot(history_fit):
plt.figure(figsize=(12,6))
# summarize history for accuracy
plt.subplot(121)
plt.plot(history_fit.history["accuracy"])
plt.plot(history_fit.history["val_accuracy"])
plt.title("model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epoch")
plt.legend(["train", "valid"], loc="upper left")
# summarize history for loss
plt.subplot(122)
plt.plot(history_fit.history["loss"])
plt.plot(history_fit.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.show()
history_plot(history)
预测代码
test_pred = [np.argmax(x) for x in test_model_pred]
test_df['labels'] = test_pred
test_df['labels']
from sklearn.metrics import classification_report
print(classification_report(test_df["label"], test_df["labels"]))
小节
那么本次分享就到此结束了。我们下回见!!!
更多推荐




所有评论(0)