[深度学习-实践]Transformer模型训练IMDB-tensorflow2 keras
1. 引言什么是Self-attention, Muti-attention和Transformer2. 数据预处理mdb影评的数据集介绍与下载下载后执行下面预处理代码,把每个词都转化为索引。import os as osimport numpy as npsave_dir = './data'import tensorflow.keras as kerasdef get_data(datapat
·
1. 引言
什么是Self-attention, Muti-attention和Transformer
2. 数据预处理
mdb影评的数据集介绍与下载
下载后执行下面预处理代码,把每个词都转化为索引。
import os as os
import numpy as np
save_dir = './data'
import tensorflow.keras as keras
def get_data(datapath):
pos_files = os.listdir(datapath + '/pos')
neg_files = os.listdir(datapath + '/neg')
print(len(pos_files))
print(len(neg_files))
pos_all = []
neg_all = []
for pf, nf in zip(pos_files, neg_files):
with open(datapath + '/pos' + '/' + pf, encoding='utf-8') as f:
s = f.read()
pos_all.append(s)
with open(datapath + '/neg' + '/' + nf, encoding='utf-8') as f:
s = f.read()
neg_all.append(s)
X_orig= np.array(pos_all + neg_all)
Y_orig = np.array([1 for _ in range(len(pos_all))] + [0 for _ in range(len(neg_all))])
print("X_orig:", X_orig.shape)
print("Y_orig:", Y_orig.shape)
return X_orig, Y_orig
vocab_size = 30000
def generate_train_vector():
X_orig, Y_orig = get_data(r'.\aclImdb\train')
X_orig_test, Y_orig_test = get_data(r'.\aclImdb\test')
X_orig = np.concatenate([X_orig, X_orig_test])
Y_orig = np.concatenate([Y_orig, Y_orig_test])
maxlen = 200
print("Start fitting the corpus......")
t = keras.preprocessing.text.Tokenizer(vocab_size) # 要使得文本向量化时省略掉低频词,就要设置这个参数
t.fit_on_texts(X_orig) # 在所有的评论数据集上训练,得到统计信息
word_index = t.word_index # 不受vocab_size的影响
print(X_orig)
print('all_vocab_size', len(word_index), type(word_index))
print(word_index)
print("Start vectorizing the sentences.......")
v_X = t.texts_to_sequences(X_orig) # 受vocab_size的影响
print("Start padding......")
print(v_X)
pad_X = keras.preprocessing.sequence.pad_sequences(v_X, maxlen=maxlen, padding='post')
print(pad_X.shape)
print('padx',pad_X[0:2])
print("Finished!")
np.savez(save_dir+'/train_vector_Data', x=pad_X, y=Y_orig)
import copy
x = list(t.word_counts.items())
s = sorted(x, key=lambda p: p[1], reverse=True)
small_word_index = copy.deepcopy(word_index) # 防止原来的字典也被改变了
print("Removing less freq words from word-index dict...")
for item in s[vocab_size:]:
small_word_index.pop(item[0])
print("Finished!")
print(len(small_word_index))
print(len(word_index))
np.save(save_dir+'/small_word_index', small_word_index)
if __name__ == '__main__':
generate_train_vector()
Transformer训练IMDB代码
利用预处理产生的train_vector_Data.npz数据训练
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
from sklearn.model_selection import train_test_split
"""
## Implement multi head self attention as a Keras layer
"""
class MultiHeadSelfAttention(layers.Layer):
def __init__(self, embed_dim, num_heads=8):
super(MultiHeadSelfAttention, self).__init__()
self.embed_dim = embed_dim # 32
self.num_heads = num_heads # 2
if embed_dim % num_heads != 0:
raise ValueError(f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}")
self.projection_dim = embed_dim // num_heads #16
self.query_dense = layers.Dense(embed_dim) # 32
self.key_dense = layers.Dense(embed_dim) # 32
self.value_dense = layers.Dense(embed_dim) # 32
self.combine_heads = layers.Dense(embed_dim) # 32
def attention(self, query, key, value): # 32 2 200 16
score = tf.matmul(query, key, transpose_b=True) # 32 2 200 200
dim_key = tf.cast(tf.shape(key)[-1], tf.float32)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1) # 32 2 200 200
output = tf.matmul(weights, value) # 32 2 200 16
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs): # 32 200 32
# x.shape = [batch_size, seq_len, embedding_dim]
batch_size = tf.shape(inputs)[0] # 32
query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim) # 32 200 32
key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim) # 32 200 32
value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim) # 32 200 32
query = self.separate_heads(query, batch_size) # (batch_size, num_heads, seq_len, projection_dim) # 32 2 200 16
key = self.separate_heads(key, batch_size) # (batch_size, num_heads, seq_len, projection_dim) # 32 2 200 16
value = self.separate_heads(value, batch_size) # (batch_size, num_heads, seq_len, projection_dim) # 32 2 200 16
attention, weights = self.attention(query, key, value) # 32 2 200 16 , 32 2 200 200
attention = tf.transpose(attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len, num_heads, projection_dim) # 32 2 200 16
concat_attention = tf.reshape(attention, (batch_size, -1, self.embed_dim)) # (batch_size, seq_len, embed_dim) # 32 200 32
output = self.combine_heads(concat_attention) # (batch_size, seq_len, embed_dim) # 32 200 32
return output # 32 200 32
"""
## Implement a Transformer block as a layer
"""
class TransformerBlock(layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.5):
super(TransformerBlock, self).__init__()
self.att = MultiHeadSelfAttention(embed_dim, num_heads)
self.ffn = keras.Sequential(
[layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim),] # 32 32
)
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = layers.Dropout(rate)
self.dropout2 = layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs) # 32 200 32
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output) # 32 200 32
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
"""
## Implement embedding layer
Two seperate embedding layers, one for tokens, one for token index (positions).
"""
class TokenAndPositionEmbedding(layers.Layer):
def __init__(self, maxlen, vocab_size, embed_dim):
super(TokenAndPositionEmbedding, self).__init__()
self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim)
self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim)
def call(self, x):
maxlen = tf.shape(x)[-1]
positions = tf.range(start=0, limit=maxlen, delta=1)
positions = self.pos_emb(positions)
x = self.token_emb(x)
return x + positions
"""
## Download and prepare dataset
"""
vocab_size = 30000 # Only consider the top 20k words
maxlen = 200 # Only consider the first 200 words of each movie review
trainDataNew = np.load('./data/train_vector_Data.npz')
x_train = trainDataNew['x']
y_train = trainDataNew['y']
"""
## Create classifier model using transformer layer
Transformer layer outputs one vector for each time step of our input sequence.
Here, we take the mean across all time steps and
use a feed forward network on top of it to classify text.
"""
embed_dim = 32 # Embedding size for each token
num_heads = 2 # Number of attention heads
ff_dim = 32 # Hidden layer size in feed forward network inside transformer
inputs = layers.Input(shape=(maxlen,))
embedding_layer = TokenAndPositionEmbedding(maxlen, vocab_size, embed_dim)
x = embedding_layer(inputs)
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim)
x = transformer_block(x)
x = layers.GlobalAveragePooling1D()(x)
x = layers.Dropout(0.1)(x)
x = layers.Dense(20, activation="relu")(x)
x = layers.Dropout(0.1)(x)
outputs = layers.Dense(2, activation="softmax")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
"""
## Train and Evaluate
"""
model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"])
history = model.fit(x_train, y_train, batch_size=128, epochs=30, validation_split=0.1)
print(history)
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.legend(['accuracy', 'val_accuracy'], loc='upper left')
plt.show()
第一个Epoch, 训练集上准确率是82.88%, 验证集上90.96%
350/352 [============================>.] - ETA: 0s - loss: 0.3647 - accuracy: 0.8286
351/352 [============================>.] - ETA: 0s - loss: 0.3645 - accuracy: 0.8287
352/352 [==============================] - ETA: 0s - loss: 0.3644 - accuracy: 0.8288
352/352 [==============================] - 113s 320ms/step - loss: 0.3644 - accuracy: 0.8288 - val_loss: 0.2234 - val_accuracy: 0.9096
Epoch 2/30
参考资料
[1] https://keras.io/examples/nlp/text_classification_with_transformer/
query = np.arange(0, 4, 1).astype(np.float32).repeat(8).reshape(2,4,4)
#query = np.arange(0, 24, 1).reshape(2, 12)
s = layers.Dense(4)
print(query)
print(s.get_weights())
attention = s(query)
print(s.get_weights())
更多推荐


所有评论(0)