AMiner平台(https://www.aminer.cn)由清华大学计算机系研发,拥有我国完全自主知识产权。平台包含了超过2.3亿学术论文/专利和1.36亿学者的科技图谱,提供学者评价、专家发现、智能指派、学术地图等科技情报专业化服务。系统2006年上线,吸引了全球220个国家/地区1000多万独立IP访问,数据下载量230万次,年度访问量超过1100万,成为学术搜索和社会网络挖掘研究的重要数据和实验平台。

必读论文:https://www.aminer.cn/topic

论文集地址:https://www.aminer.cn/topic/60656b2592c7f9be2157f7e2

图像分类是计算机视觉、模式识别领域的研究热点,在智能交通、安全监控、机器人导航等领域有着广泛的应用。在图像分类中,需要大量有标记的样本来训练稳定的分类模型,以实现对未知图像的准确分类。但是在实际应用中,有标记的图像数量非常之少,无标记的图像却随处可见,且图像的人工标记是件费时费力的工作。为了减少人工标记工作量,主动学习(Active Learning)技术被引入到图像分类中。主动学习的主要思想是:在大量未标记的样本中,采用某种策略,挑选少量最有信息量且最具代表性的样本交给专家进行标记。使用标记过的样本训练模型,实现对未知样本的准确分类。主动学习的核心技术是如何设计准则来挑选最具信息量的样本,以最大程度提升分类模型的性能。

该论文集共收录23篇论文,引用最多的论文为Support vector machine active learning for image retrieval,引用数为1732。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

AMiner,一个具有认知智能的学术搜索引擎:https://www.aminer.cn

#AMiner# #论文#

Logo

一站式 AI 云服务平台

更多推荐