先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

  • 医学诊断工具,如 X 射线成像分析软件
  • 安全措施,例如生物特征认证系统
  • 通过机器人手臂控制程序实现工业自动化
  • 娱乐技术,如增强现实游戏或零售店的虚拟试衣间

所有这些都严重依赖计算机视觉技术!

此外,许多公司使用此技术通过使用图像处理技术(例如文本检测/识别和光学字符读取(OCR))来自动化其业务流程。这些自动化解决方案有助于降低成本,同时提高全球多个行业的效率。

计算机视觉 Python 中的基本概念
Python 中的图像表示

图像表示是将数字图像存储在存储器中供计算机系统使用的过程。它涉及将图像中的视觉数据转换为数值,这些数值可以使用算法或其他软件工具进行操作或分析。

这里的目标是在图像中创建对象的表示,这样机器就可以更容易地理解这些对象,从而允许人类使用计算机对数目巨大的对象进行管理。

Python图像处理

图像处理是指用于处理数字图像的技术,其目的是提高图像质量或从中提取有用信息,例如识别边缘或纹理等特征,以便在稍后进行特征提取任务时更好地对这些图像中的对象进行分类(见下文)。

图像处理通常包括降噪(平滑粗糙区域)、对比度增强(使黑暗部分更亮)、色彩校正/平衡(调整色调)等操作,所有这些操作的复杂程度各不相同,这取决于与计算机视觉技术相关的项目在开发周期中的任何特定时刻所需要的内容。

特征检测与提取

它具体指的是当试图识别图像中的模式时所采用的方法,无论是通过人工手段,还是利用卷积神经网络的自动化方法。

人工手段是指:通过人工干预,专家手动概述感兴趣的区域,然后将其输入到机器学习模型中,以根据预先提供的示例训练来识别某些特征

自动化方法是指机器能够自动检测输入中存在的各种类型的特征,例如面部、眼睛等。

这两种策略都用于相同的目的,即提供可靠的来源和数据,以进一步分析下游过程,从而使最终用户能够快速准确地获得结果。

使用 Python 进行计算机视觉
最佳计算机视觉库 Python

第一步是安装必要的库:Numpy、Matplotlib 和 OpenCV。安装这些包可以通过你计算机的包管理器或直接从他们的网站下载它们来完成。在系统上安装所有这些包后,你就可以开始使用 Python 编写计算机视觉任务的代码。

在 Python 中加载图像

接下来我们将看看使用 python 加载图像,以便它们可以处理各种任务,例如对象检测或面部识别。有多种方法可以实现这一点,包括将图像文件读入 NumPy 数组,或从给定的文件路径字符串创建 OpenCV 实例。

Python 中的图像处理

最后,让我们谈谈如何使用一些基本操作(例如过滤和增强技术)来处理加载的图像数据,这些操作允许我们对最终产品进行更多的控制,而不是仅仅依靠原始像素值来提供访问。

过滤技术涉及应用某些算法来修改每个单独的像素值,而增强技术通常指在保存编辑会话期间所做的任何更改之前,在现有图片帧本身内锐化细节。

通过将这两种策略结合在一起,用户可以获得更大的权力来决定他们在完成各自的项目后,最终会获得什么样的输出结果。

使用 Python 的计算机视觉应用
对象识别

对象识别是一种基于 AI 的技术,可根据形状或颜色等特征识别图像或视频中的对象。该技术已应用于许多领域,例如出于安全目的的面部识别、使用条形码或二维码自动识别零售店的产品、自动驾驶汽车识别道路上的障碍物等。

例如:亚马逊的“Just Walk Out”(https://justwalkout.com/)功能,它使用对象识别算法来检测顾客从货架上拿走的物品,这样他们离开商店时就不需要排队结账了。

人脸检测与识别

人脸检测和识别是另一个 AI 应用程序,即使在低光照环境或由于戴眼镜/帽子等造成的部分遮挡等具有挑战性的条件下,它也能从数字图像中以高精度识别人脸。它变得越来越流行,因为它使身份验证过程比密码/pin等传统方法简单得多。

人脸检测和识别系统无处不在,解锁智能手机(Apple 的 Face ID)、办公室/建筑物的门禁系统、学校和大学的出勤监控系统等等。

对象跟踪

物体跟踪是一种计算机视觉技术,它通过识别物体相对于其他元素的位置来跟踪视频帧中的物体。

例如,人们在商场走来走去,而购物中心监控摄像头分别跟踪他们,而不会混淆谁是谁。

图像分割涉及将图像分解成其组成部分,即像素,以便可以根据不同的标准对每个部分进行分类——这有助于更有效地识别具有不同特征的区域,从而使与分析医学扫描相关的任务更加容易。

例如,放射科医生在 MRI 扫描中使用分割技术来更好地分析肿瘤。

Python 中计算机视觉的优势
  • 与 C++ 或 Java 等其他语言相比,易于使用。只需几行代码,你就可以快速轻松地创建复杂的算法,而无需学习复杂的语法或从头开始编写冗长的程序。
  • 有许多包含预写函数的库可用,这些函数允许开发人员专注于项目背后的逻辑,而不是每次需要在程序中实现新内容时都花时间从头开始编写代码,从而使开发变得更加简单。
Python 中计算机视觉的缺点

但是,将 Python 用于计算机视觉项目时也存在一些限制;一个是速度,因为它是一种解释型语言,因此执行时间往往比编译语言(如 C++ 或 Java)慢,这可能会影响大型项目的性能,其中需要在实时场景中快速处理大量数据点,例如机器人控制系统,在这种情况下,每毫秒对系统自身实现的总体精度水平都有影响。

另一个限制是由于其动态类型检查而难以调试某些错误,与 Java 等静态类型语言相比,乍一看更难追踪,如果在运行时发生任何意外行为,编译器会立即抛出错误,以帮助查明更快地解决问题,从而节省宝贵的开发时间。

结论

本文为读者提供了全面的指南,帮助他们了解基础知识并开始从事计算机视觉项目。它将为你提供一个良好的基础,以进一步探索深入机器学习和人工智能的迷人世界。

读者福利:知道你对Python感兴趣,便准备了这套python学习资料

👉[[CSDN大礼包:《python兼职资源&全套学习资料》免费分享]]安全链接,放心点击

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!

零基础Python学习资源介绍

  • ① Python所有方向的学习路线图,清楚各个方向要学什么东西
  • ② 600多节Python课程视频,涵盖必备基础、爬虫和数据分析
  • ③ 100多个Python实战案例,含50个超大型项目详解,学习不再是只会理论
  • ④ 20款主流手游迫解 爬虫手游逆行迫解教程包
  • ⑤ 爬虫与反爬虫攻防教程包,含15个大型网站迫解
  • ⑥ 爬虫APP逆向实战教程包,含45项绝密技术详解
  • ⑦ 超300本Python电子好书,从入门到高阶应有尽有
  • ⑧ 华为出品独家Python漫画教程,手机也能学习
  • ⑨ 历年互联网企业Python面试真题,复习时非常方便

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-LJaYJ29e-1713624803794)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

Logo

一站式 AI 云服务平台

更多推荐