一些数据增强手段
1.mixupdef mixup_data(x, y, alpha=1.0, use_cuda=True):'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''if alpha > 0.:lam = np.random.beta(alpha, alpha)else:lam = 1.bat
·
1.mixup
def mixup_data(x, y, alpha=1.0, use_cuda=True):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
batch_size = x.size()[0]
if use_cuda:
index = torch.randperm(batch_size).cuda()
else:
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index,:]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
注意计算loss时候,加权一下
loss = lam * criterion(pred, y_a) + (1 - lam) * criterion(pred, y_b)
参考:其他一些别的.
更多推荐




所有评论(0)